
OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

Helge Schulz

Version: 1.0
State: Released
Modified: 2006-06-29

OpenSHORE.org Page 1 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

Summary

This document is a tutorial for writing specifications in the “Semantic Markup Rule Language”
(SMRL). SMRL is an XML based specification language to mark or extract semantic meaningful
sections and relations in/from structured human readable documents. This tutorial shows the usage
of each SMRL XML element and lists all possible attributes with their meaning. The appendix con
tains technical instructions how to use Eclipse WST as SMRL editor and how to call the SMRL
Metaparser (a XSLT implementation of SMRL).

Version History

Version Date State Author Changes

0.1 20060526 Work in progress Helge Schulz First outline

0.2 20060520 Work in progress Helge Schulz Added contents of section A.1

0.3 20060603 Work in progress Helge Schulz Added introduction

0.4 20060604 Work in progress Helge Schulz Finished basic matching and appendix

0.5 20060605 Work in progress Helge Schulz Finished naming, references, relations

0.6 20060606 Work in progress Helge Schulz Added example document frame

0.7 20060607 Ready for review Helge Schulz Finished example and last section

0.8 20060617 Ready for review Helge Schulz Incorporated enhancements from
David Jenkins until section 3

1.0 20060629 Released Helge Schulz Incorporated final enhancements

OpenSHORE.org Page 2 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

Copyright © 2006 Helge Schulz

OpenSHORE is Open Source Software; you can redistribute it and/or modify it under the sd&m
Common Public License. You should have received a copy of this License along with OpenSHORE
(see sdmcplv10.html).

OpenSHORE is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the sd&m Common Public License for more details.

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

Table of Contents
1 Introduction .. 4

2 Example .. 4

3 Basic Matching ... 8

3.1 Document Type ... 8

3.2 Marking Objects ... 11

3.2.1 Sections .. 11

3.2.2 List Items .. 12

3.2.3 Tables ... 13

3.2.4 Text Items ... 14

4 Building Names .. 15

5 Referencing Matches ... 16

5.1 Default Visibility ... 17

5.2 Explicit Visibility ... 18

5.3 Defining Dependencies .. 18

5.4 Implicit Namespaces .. 19

5.5 Explicit Namespaces ... 20

6 Marking Relations .. 20

6.1 Regular Relations .. 21

6.2 Composite Relations .. 22

7 Combining rules ... 23

A Appendix ... 24

A.1 Using Eclipse WST as SMRL Editor .. 24

A.2 Running the SMRL Metaparser ... 26

A.2.1 Apache Ant ... 27

A.2.2 OpenOffice Filter ... 28

A.2.3 MS Word ... 28

Bibliography ... 29

Alphabetical Index .. 30

OpenSHORE.org Page 3 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

1 Introduction

This document is a tutorial for writing specifications in the “Semantic Markup Rule Language”
(SMRL). SMRL is a specification language to mark or extract semantic meaningful sections and re
lations in/from structured human readable documents. It is independent from the concrete input
document format and output result format. Therefore such specifications contain pattern definitions
for elements which exist in every structured document, such as sections, lists and tables. See Open
SHORE.org for applications, further general information and OpenSource implementations of
SMRL processors.

This document is not a reference or definition for SMRL. SMRL is an XML dialect and is therefore
defined in an XML schema file (smrl.xsd, [Vlist2002]). This file contains documentation for ev
ery XML element and attribute. Please use the schema file as reference. You can use it together
with schema aware XML editors to get context sensitive help and input completion while writing
SMRL files. One example of a such an editor is the OpenSource XML editor of the WST Eclipse
plugin. Please see appendix A.1 for screenshot examples of input help and how to configure Eclipse
WST to get SMRL editing support.

This tutorial consists of five parts: Section 1 is this introduction; Section 2 contains a complete ex
ample of an input document and a corresponding SMRL specification. Section 3 explains basic
matching and introduces all SMRL XML elements. Section 4 describes how to reference other
matches to specify relations and build up name(s) (spaces). The appendix contains technical in
structions on how to use Eclipse WST as an SMRL editor and how to call the SMRL Metaparser
(an XSLT implementation of SMRL).

2 Example

The following example shows how SMRL can be used to mark and extract semantic information
from a rich text document. A simple structured cookbook is used as input and with help of SMRL a
database of all contained recipes, related ingredients and instruction steps should be created. For
this imagine that we are now in the year 2050 and a world wide semantic web has been implement
ed, containing all public documents that are available electronically. Query engines crawling this
web can answer nearly all logical questions to information in these documents. So for example you
can advise your computer to reserve a table in a restaurant with a good customer rating, not further
than 1000 meters from your flat, for a free evening in your appointment book. To solve this task,
there must be some agreed definitions for terms like “rating”, “distance”, “opening hours”, “free
evening” and web sites must mark this semantic information on their sites accordingly.

Now imagine you find your grandma’s cookbook stored on a good old DVD. Your grandma wrote
the book with a preXML rich text editor. Fortunately you find a conversion service which has spe
cialized in reading legacy media like DVDs and converting legacy documents into XML. But the
service can not add semantic markup to the resulting document and you cannot advise your comput
er to automatically order all needed ingredients for a specific recipe or to read instruction steps
aloud while cooking as usual. In this situation you can use SMRL to add semantic markup to the

OpenSHORE.org Page 4 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

http://OpenSHORE.org/
http://OpenSHORE.org/

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

book.

Your grandma’s cookbook has the following structure, which is also represented in XML elements
for sections, items and tables:

Before you can extract semantic information, you must have data model for the information you
want to extract. This model is often called meta model or an ontology, if terms are ordered in

OpenSHORE.org Page 5 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

Listing 1: Cookbook example document

My Grandma’s Cookbook

...

1. Ingredients

1.1 Flour
 ...

1.2 Eggs
 ...

...

2. Recipes

2.1 Pancakes

Ingredients:

Quantity Ingredient

2 cups Flour

2 Eggs

... ...

Directions:

1. ...

2. ...

3. ...

...

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

inheritance trees. Here is a simple meta model for the document above:

The model defines the document type “Cookbook”, 4 object types (text parts with semantic mean
ing) and 3 relation types. The SMRL specification can now derived from the model and the docu
ment structure:

OpenSHORE.org Page 6 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

Graphic 1: Cookbook meta model

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

The document tag marks the document as cookbook, if the title contains the word “Cookbook”.

Subsections of the section titled with 'Ingredients' are marked as ingredients and the heading converted
to lower case is used as the name.

Subsections of the section titled with 'Recipes' are marked as recipe and the heading is used as the
name.

Table cells of the first column after the first row contain the ingredient quantity and are marked as the
relation 'Recipe_needs_Ingredient'.

Table cells of the second column after the first row contain the ingredient name and are marked as
such. An additional composite relation connects them with their types.

OpenSHORE.org Page 7 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

<?xml version="1.0" encoding="ISO-8859-1"?>
<smrl xmlns="http://OpenSHORE.org/schemas/smrl/1.0/">
 <document title-contains="Cookbook" type="Cookbook">
 <section title-contains="Ingredients">
 <section type="IngredientType" to-lower-case="true"/>
 </section>
 <section title-starts-with="Recipes">
 <section id="RecipeName" type="Recipe">
 <table>
 <row gt="1">
 <col eq="1"
 type="Recipe_needs_Ingredient"
 source-type="Recipe"
 source-ref="RecipeName"
 target-type="Ingredient"
 target-ref="IngredientName"
 />
 <col eq="2" id="IngredientName"
 type="Ingredient"
 to-lower-case="true"
 namespaces="RecipeName"
 composite-rel-type="Ingredient_has_IngredientType"
 composite-source-type="Ingredient"
 composite-source-ref="IngredientName"
 composite-target-type="IngredientType"
 composite-target-ref="IngredientTypeName"
 />
 <col eq="2" id="IngredientTypeName"/>
 </row>
 </table>
 <item id="DirectionStepName" type="DirectionStep"
 name-by-position="true"
 namespaces="RecipeName"
 composite-rel-type="Recipe_has_DirectionStep"
 composite-source-type="Recipe"
 composite-source-ref="RecipeName"
 composite-target-type="DirectionStep"
 composite-target-ref="DirectionStepName"
 />
 </section>
 </section>
 </document>
</smrl>

Listing 2: SMRL specification for “Grandmas Cookbook”

1

1

2

2

3

4

5

6

3

4

5

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

List items inside recipes are marked as direction steps. They are numbered and their name is prefixed
with the enclosing recipe name (namespace attribute). An additional composite relations connects them
with the enclosing recipe.

SMRL processors may create very different output formats. They all have in common that the result
document represents a semantic graph of the content of the input document. The semantic graph of
the example document from listing 1 above is shown in graphic 2 below. Example result file for
mats are SHORE XML, “XML Topic Maps” (XTM, [Mück2002] chapter 11), “Graph eXchange
Language” (GXL) and “Resource Description Format” (RDF). From all these formats a database
can be filled with the semantic graph. This database can queried afterwards to find all ingredients
and instruction steps to a specific recipe.

3 Basic Matching

This section introduces all XML elements used by SMRL specifications and explain basic matching
of input document structures. Higher level concepts like namespaces and references to matches are
implemented as additional XML attributes explained in later sections.

3.1 Document Type

An SMRL specification file can contain rules for several document types. A document type defines
common characteristics of a set of documents. Typical document types for a software project are for
example “Requirement Specification”, “Use Case Specification”, “Data Model”, “Test Case De

OpenSHORE.org Page 8 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

6

Graphic 2: Semantic graph derived from Cookbook example

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

scriptions” etc. So the first task in writing a new SMRL specification is to define and match docu
ment types. This is done by using the “document” XML element and the document type is defined
by the contained “type” XML attribute. This element is the only top level element inside the
“smrl” document element. The “type” attribute is used whenever document content is associated
with a semantic meaning and to declare it to be an instance specific type of semantic statement.

Matching is done by predicates defined as XML attributes of the document element. SMRL pro
vides the two attributes “title-contains” and “description-contains” as predicates for
document type matching. This attributes match if either the document title or the document descrip
tion contains the given string value of the attribute. Document title and description are extracted
from the document meta data and not from document text content, which might be displayed or
styled as title or document description. Meta data title and description are usually set via a special
document property dialog of the rich text editor. This is also the reason why SMRL has only limited
features to match document types, because title and description properties can be set inside a docu
ment template file, which is then used for all documents of this type.

Hence the template for the top level elements of a SMRL file looks like this:

<?xml version="1.0"?>
<smrl xmlns="http://OpenSHORE.org/schemas/smrl/1.0/">

 <document
 type="[document type name]"
 [document predicates]
 >
 [pattern rules of document type]
 </document>

 [...]

</smrl>

XML Attribute Description

title-contains (Meta data) title contains string

description-contains (Meta data) description contains string

Table 1: Document predicate attributes

If you are writing SMRL specification for all documents of a software project, the skeleton of your
SMRL file might look like this:

<?xml version="1.0"?>
<smrl xmlns="http://OpenSHORE.org/schemas/smrl/1.0/">

 <document
 type="RequirementSpecification"

OpenSHORE.org Page 9 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

http://OpenSHORE.org/schemas/smrl/1.0/
http://OpenSHORE.org/schemas/smrl/1.0/

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

 title-contains="Requirements of"
 >
 [pattern rules for requirements]
 </document>

 <document
 type="UseCaseSpecification"
 description-contains="type=UseCaseSpecification;"
 >
 [pattern rules for use cases]
 </document>

 <document
 type="TestCaseDescription"
 title-contains="Test Case"
 >
 [pattern rules for a test case]
 </document>

</smrl>

To change the meta data title and description select menu “File → Properties” in OpenOffice and
MS Word. Screenshot 1 below shows the meta data dialog of both applications.

OpenSHORE.org Page 10 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

Screenshot 1: Setting title and description in OpenOffice and MS Word

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

3.2 Marking Objects

Objects in the sense of SMRL are text sections inside a document which define or describe a se
mantically meaningful object of the system which is described by the document. Each such object
has a type and a name. The name should be unique for a type, if all documents are in a consistent
state and might be composed from several name spaces or numbering parts (see section 4 on page
15 for further details). The following sections describe SMRL pattern elements to mark/extract doc
ument sections as such objects.

3.2.1 Sections

The “section” XML elements marks/extracts a whole document section as an object. Such a doc
ument section is derived from the logical hierarchical (outline) section structure of a document with
a composite tree of high level parts (chapter or section) and composite elements (subsection, sub
subsection etc.). So if a top level section is marked, all contained sub and subsubsections are part
of the marked region.

The type of a section object is defined by the “type” XML attribute. The name of the object de
faults to the section heading and can be tailored with several attributes described in section 4. The
matching of a section rule depends on title and content predicates listed in table 2 and 3. If several
predicates are used, all must be true for matching (logical “and”). So the template for a section ob
ject rule looks like this:

<section
 type="[object type name]"
 [title and content predicates]
 [name tailoring attributes]
>
 [object and relation rules for a matched section]
</section>

XML Attribute Description

title-contains Section heading contains the given string

title-not-contains Section heading does not contain the given string

title-starts-with Section heading starts with the given string

title-ends-with Section heading ends with the given string

Table 2: Title predicate attributes

OpenSHORE.org Page 11 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

XML Attribute Description

contains Section contains the given string

not-contains Section does not contain the given string

not-equal Section text is equal to the given string

pred-contains A predecessor (preceding sibling) section contains the given string

succ-contains A successor (following sibling) section contains the given string

is-number The whole section text is a number

Table 3: Content predicate attributes

If you want mark for examples all sections inside an use case description document and section ti
tles of uses cases starts with “Use Case:”, your SMRL section rule might look like this:

<section
 type="UseCase"
 title-starts-with="Use Case:"
 name-after=": "
>
 [object and relation rules for an use case]
</section>

3.2.2 List Items

The “item” XML element marks/extract a list item as an object. This element matches items of or
dered (with numbers) and unordered lists (with bullets) on any indentation level. This lists might
also be enclosed in tables.

The type of the item object is defined by the “type” XML attribute. The name of the object de
faults to the item content text and can be tailored with several attributes described in section 4. The
matching of an item rule depends on content predicates as listed in table 3 above. If several predi
cates are used, all must be true for matching (logical “and”). An item rule is usually combined with
a section rule to match only items of lists in a specific section of the document. So the template for
an item object rule looks like this:

<item
 type="[object type name]"
 [content predicates]
 [name tailoring attributes]
>
 [object and relation rules for a matching item]
</item>

For example, if you want to mark all possible use case states (e.g. “work in progress” to “accepted”)
and they are defined as unordered list items in a section titled “Use Case States”, your SMRL rule

OpenSHORE.org Page 12 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

might look like this:

<section title-contains="Use Case States">
 <item
 type="UseCaseState"
 name-before=":"
 />
</section>

3.2.3 Tables

The “table” XML element with enclosed “row” and “col” elements for table rows and columns
provides rules to match table cells. The table element contains row elements and row elements con
tain column elements. This is similar to the table model of HTML and DocBook.

The type of the table cell object is defined by the “type” XML attribute. The name of the object
defaults to the cell content text and can be tailored with several attributes described in section 4.
The matching of table elements depends on title predicates applied to the table caption (see table 2
above). The matching of row and column elements depends on content predicates as listed in table 3
above and position attributes described in table 4 below. The row and column numbering starts with
one. If several predicates are used for one element, all must be true for matching (logical “and”). So
the template for a table rule looks like this:

<table
 [title predicates]
>
 <row
 [content predicates]
 [position predicates]
 >
 <col
 type="[object type name]"
 [content predicates]
 [position predicates]
 >
 [object and relation rules for matching cell]
 </col>
 [column elements for same row]
 </row>
 [row elements for same table]
</table>

OpenSHORE.org Page 13 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

XML Attribute Description

eq Position is equal to given value

lt Position is less then given value

gt Position is greater then given value

Table 4: Position predicate attributes

For example, if you want to mark all possible use case states (e.g. “work in progress” to “accepted”)
and they are defined in the first column of a table titled “Use Case States”, your SMRL rule might
look like this:

<table title-contains="Use Case States">
 <row pred-contains="State">
 <col
 type="UseCaseState"
 eq="1"
 />
 </row>
</table>

3.2.4 Text Items

The “text” elements provides rules for matching single words inside text as objects (text items).
There are two alternatives forms for matching text:

1. The matched words are positioned between two text markers (also words or special charac
ters separated by whitespace). Several words are separated by whitespace or punctuation
characters.

2. The matched words starts with a common prefix, which identifies their type (i.e. “REQ_” for
references to a requirement).

The type of the text item is defined by the “type” XML attribute. The name of the object defaults
to the word itself and can be tailored with several attributes described in section 4. A text item rule
can be declared as global, if it is inserted as child of the “document” element and the SML at
tribute “global” is set to “true”. Such a rule is applied to all text paragraphs which are not sub
ject to any other rule. Possible XML attributes of a text rules are listed in table 5 below. So the tem
plates of both forms look like this:

<text
 type="[object type name]"
 marker-starts-with="[marker start word]"
 marker-ends-with="[marker end word]"
 [optional global attribute]
/>

OpenSHORE.org Page 14 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

<text
 type="[object type name]"
 word-starts-with="[word prefix]"
 [optional global attribute]
/>

XML Attribute Description

global Text rule is marked as global

marker-starts-with Start marker for words as text items

marker-ends-with End marker for words as text items

word-starts-with Prefix for searched words

Table 5: Text item attributes

If you want mark for examples all words between “(possible use case states:” and “)” as use case
states, your rule might look like this:

<text
 type="UseCaseState"
 marker-starts-with="(possible use case states:"
 marker-ends-with=")"
/>

Another possibility is to prefix all possible states with “UCS_” in a defining section:

<section title-contains="Use Case States">
 <text
 type="UseCaseState"
 word-starts-with="UCS_"
 />
</section>

4 Building Names

All pattern rules described in the previous section mark a named object, if they are match. Naming
of these objects is existential, because relation definitions use these names to specify their end
points and therefore a name should be unique between all instances of an object type. Applications
reading output files of SMRL processor will also present object names to users, so users should rec
ognize these names and they should not deviate from usual naming schemes. SMRL therefore pro
vides several XML attributes to tailor names. Such attributes can be applied to all pattern rule ele
ments.

OpenSHORE.org Page 15 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

One special situation is the case of elements containing a list of names. In such cases every word
separated by whitespace or punctuation characters represents an object or relation of its own. For
these cases SMRL provides the “word-list” attribute, which switches to word handling instead of
using the whole heading or content as one name.

Name tailoring attributes act either directly on the current element or they reference to other match
es to composite a name of several elements. Table 6 lists all attributes acting on the current element.
Attributes with references (“name-ref” and “namespaces”) are explained in the following sec
tion.

XML Attribute Description

name-after Use characters after the given string as name

name-before Use characters before the given string as name

name-prefix Add the given string as name prefix

name-postfix Add the given string as name postfix

name-by-position Use the relative position number (sibling number) as name

to-lower-case Convert the name to lower case characters

to-upper-case Convert the name to upper case characters

number-format If the name is a number, format it by given template (containing “.,%#0”)

decimal-format Reference to XSLT decimal format for numbers

word-list Use every word separated by whitespace/punctuation characters as name

Table 6: Name building XML attributes

5 Referencing Matches

Identification and naming of objects is only one part of semantic markup. The second part is detec
tion and marking of relations between objects inside and outside the document. Objects are identi
fied by their type and name. Consequently the task of relation definition is to find and select type
and name of the relation source and target objects. Therefore it is not sufficient to extract a name
from a current element, because this name can either be the source or the target name. Sometimes
neither name is part of the matching element and you must reference other matches to select them.

SMRL provides an identification and reference system for matches to select relation end names, de
fine dependencies and namespaces. Every pattern rule may contain the “id” XML attribute to asso
ciate a match with a given identifier. These identifiers can then be referenced at other places. Such
identifiers have a defined visibility, which is related to the structure of the input document (not of
the SMRL document). It defines where other matches can reference a match to extract its name. The
default visibility enclose all sibling elements (elements on same level) and all their children (ele
ments on enclosed sublevels). This default can be changed by the “visibility” attribute ex
plained in next sections.

OpenSHORE.org Page 16 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

Table 7 lists all XML attributes related to identifiers and references without relation definition. Re
lations are explained in section 6. The following sections describe the usage of references.

XML Attribute Description

id Associate a match with the given identifier

visibility Change visibility of a match from default to named behavior

depends Link matching to other matches

namespaces Use names of outer matches listed by identifiers as namespace

name-ref Compose name from names of other matches listed by identifiers

Table 7: Identification and reference XML attributes

5.1 Default Visibility

The default visibility encloses all sibling elements (elements on same level) and all their children
(elements on enclosed sublevels). This region is broadened to all nephews at the same position, if a
rule contains no “type” attribute. These function is very practical for matching matrix oriented
structures such as tables. Nephews at same position means that they match in the same column.

For example, if you want to mark database table names in a document table containing a table space
name in the first column and a table name in the second column and you want prefix the table name
by the corresponding table space name, your SMRL fragment might look like this:

<table title-contains="Tables">
 <row gt="1">
 <col
 eq="1"
 id="TableSpaceName"
 type="DatabaseTableSpace"
 />
 <col
 eq="2"
 id="TableName"
 type="DatabaseTable"
 name-ref="TableSpaceName TableName"
 />
 <row>
</table>

Because all column elements are siblings, the “TableSpaceName” and “TableName” identifiers
are visible in the whole row and all sub elements. The “name-ref” attribute composes the table
name of both names and concatenates them with a dot (“.”). This is also called explicit name space
handling (see section 5.5). If you want to use table column headers to select columns instead of us
ing hard coded numbers, you can rely on the “nephews at same position” rule to do this:

OpenSHORE.org Page 17 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

<table title-contains="Tables">
 <row eq="1">
 <col contains="Table Space" id="TableSpaceColumn"/>
 <col contains="Table" id="TableColumn"/>
 </row>
 <row gt="1">
 <col
 depends="TableSpaceColumn"
 id="TableSpaceName"
 type="DatabaseTableSpace"
 />
 <col
 depends="TableColumn"
 id="TableName"
 type="DatabaseTable"
 name-ref="TableSpaceName TableName"
 />
 <row>
</table>

Because the “col” elements for matching table headers have no “type” attribute, the used identi
fiers are visible in the whole table column and can be used to declare their dependencies.

5.2 Explicit Visibility

You can change the default visibility by setting the “visibility” XML attribute for an element
with an identifier. Table 8 lists all legal values, their meaning and for which input format they can
be used. If more then one match has a visibility on the same level, only the first match will be
found. So please use caution when defining rules with broader visibility.

Visibility Rich Text Spreadsheet Description

default Siblings elements and all children elements

global Whole document

section Section containing match

table Table containing match

indent Following rows with next one lower indent level

Table 8: Possible visibility values

5.3 Defining Dependencies

SMRL provides the “depends” XML attribute to define explicit dependencies between matches.
This attribute contains a space separated list of identifiers from other matches, which must all be
found to result in a matching of the rule. Dependencies are not resolved recursively, so if the refer

OpenSHORE.org Page 18 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

enced match also has dependencies, they are not checked (only primary predicate attributes are
checked). Implicit dependencies also exists as defined by the relations attributes explained in sec
tion 6. SMRL processors do not issue a warning about missing dependencies. This is because you
can define several rules at the same level, which are then selected by dependencies (logical “or”). It
would be annoying to get several messages for every input element evaluated by such rules. If you
want to get these messages, you must set/increase the debugging level of the SMRL processor used.

Please use and define dependencies with care, because evaluation of dependencies is more complex
than checking primary predicate attributes. SMRL processors might use an algorithm with quadratic
or worser complexity to evaluate dependencies. If you process a large spreadsheet with more then
1000 rows and 500 columns, the processing time might rise over half an hour, if you define a de
pendency for every cell ((1000 * 500) ^ 2 = 250 billion steps).

5.4 Implicit Namespaces

Names of objects must be unique between all instances of an object type to distinguish them from
each other and establish proper relations. But often identical names are used in a large system in
different contexts and this context is not only related to the object type. Many systems defines a
system of namespaces to avoid name clashes in such cases. These namespaces must be transformed
into SMRL to avoid name clashes their too. SMRL provides two forms of namespace building to re
solve this. The more convenient form are implicit namespaces. But it can not used in all situations,
however, so an explicit namespace handling is also provided, described in section 5.5.

You can use implicit namespaces if the structure of your input document corresponds to the struc
ture of namespaces. This means that every element of a namespace must be enclosed in an outer el
ement defining the namespace. An example for such a structure would be sections defining software
components, where all interfaces of the component are defined in subsections.

SMRL provides the “namespaces” XML attribute to use implicit namespaces. This attribute con
tains a list of identifiers referencing outer matches. The names of these outer matches are used as
prefix to the current name separated by dots (“.”). If your input document defines software compo
nents in a document section, for example, your SMRL rules might look like this:

<section
 title-contains="Component:"
 id="ComponentName"
 type="Component"
 name-after=": "
>
 <section
 title-contains="Interface:"
 type="Interface"
 namespaces="ComponentName"
 name-after=": "
 />
/>

OpenSHORE.org Page 19 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

In this example the interface name is prefixed with the component name. The advantage of implicit
namespaces is that all references to the inner matches are automatically use the fully qualified com
posed name.

5.5 Explicit Namespaces

If your the structure of your documents does not corresponds to the namespace structure, you must
use explicit namespaces. This is done by using the “name-ref” XML attribute. This attribute con
tains a list of identifiers referencing other matches. The name is composed by concatenating all
names of referenced matches by a dot (“.”). Consequently the example of the previous section can
be written with explicit namespaces as follows:

<section
 title-contains="Component:"
 id="ComponentName"
 type="Component"
 name-after=": "
>
 <section
 title-contains="Interface:"
 id="InterfaceName"
 type="Interface"
 name-ref="ComponentName InterfaceName"
 name-after=": "
 />
/>

The disadvantage of explicit namespaces is that you must repeat all identifier names in all refer
ences that refer to the composed name. In the example above you must always use
“ComponentName InterfaceName” to obtain the full interface name.

6 Marking Relations

Relations marked by an SMRL processor inside documents have a relation type, a source object and
a target object. Objects are identified by type and name. They might be defined inside or outside of
the processed document. The SMRL processor does not resolve references to objects. This job is
left to a semantic repository like the OpenSHORE server or other servers, which are read SMRL
processing output files of related documents and build up a semantic network inside a database. But
the SMRL processor must determine names and types of both relation ends.

Regular relations are user visible inside the input document by using names as references to other
objects. Non user visible relations implicitly defined by the document structure are handled as com
posite relations.

OpenSHORE.org Page 20 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

6.1 Regular Relations

Rules for regular relations are defined with the same XML elements as rules for objects. You can
use every XML element described in section 3 (Basic Matching) to define a rule resulting in a rela
tion, if it matches. The difference between an object matching rule and a relation rule is that the
“type” attribute contains a relation type name and that the first four XML attributes of table 9
must be defined. These attributes define type and name of the source and target objects. Attributes
“source-type” and “target-type” are simple names as used for the “type” attribute of ob
jects. Attributes “source-ref” and “target-ref” are space separated lists of identifiers of other
matches. The source and target name used are composed from these matches.

XML Attribute Description

source-type Type name of source object

source-ref Identifier(s) of matches containing the source object name

target-type Type name of target object

target-ref Identifier(s) of matches containing the target object name

direction Navigation direction (“source” or “target”, defaults to “target”)

Table 9: Relation XML attributes

We can distinguish the following three types of relation rules:

1. The target name is contained inside the matched element (usual case for references)

→ “source-ref” refers to an outer object which references the target
→ “target-ref” refers to the identifier itself

2. The source name is contained inside the matched element (inverted relation definition)

→ “source-ref” refers to the identifier itself
→ “target-ref” refers to an outer object which is the relation target
→ “direction” might be set to “source” to invert navigation direction

3. Neither source nor target name are contained inside the matched element

→ “source-ref” refers to another match containing the source name
→ “target-ref” refers to another match containing the target name

For example, in a requirement specification, if you want to mark all occurrences of words starting
with “REQ_” as references to another requirement, your SMRL fragment might look like this:

<section
 title-starts-with="REQ_"
 id="RequirementName"
 type="Requirement"

OpenSHORE.org Page 21 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

>
 <text
 word-starts-with="REQ_"
 id="ReferencedName"
 type="Requirement_refers_Requirement"
 source-type="Requirement"
 source-ref="RequirementName"
 target-type="Requirement"
 target-ref="ReferencedName"
 />
</section>

6.2 Composite Relations

Composite relations are relations which are implicitly defined by the document structure and are not
directly visible to the user. Typical examples are “part of” relations which are often implicit defined
by the document structure. Such relations do not need XML rule elements of their own. They are
defined instead as a set of additional attributes, which are in turn defined with another object or re
lation rule. Table 10 lists these set of additional XML attributes. Their meaning is exactly the same
as the corresponding attributes of regular relations (without “composite-”).

XML Attribute Description

composite-rel-type Relation type name

composite-source-type Type name of source object

composite-source-ref Identifier(s) of matches containing the source object name

composite-target-type Type name of target object

composite-target-ref Identifier(s) of matches containing the target object name

Table 10: Composite relation XML attributes

If you want for example to parse a software specification document with component and enclosed
interface definitions, your SMRL fragment might look like this:

<section
 title-contains="Component:"
 id="ComponentName"
 type="Component"
 name-after=": "
>
 <section
 title-contains="Interface:"
 id="InterfaceName"
 type="Interface"
 namespaces="ComponentName"
 name-after=": "

OpenSHORE.org Page 22 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

 composite-rel-type="Component_implements_Interface"
 composite-source-type="Component"
 composite-source-ref="ComponentName"
 composite-target-type="Interface"
 composite-target-ref="InterfaceName"
 />
/>

7 Combining rules

Pattern XML elements inside a “document” element can be combined by placing them on the same
level or by enclosing them in on another. Elements on the same level are evaluated in document or
der and set up a logical “or” between the predicates used. Enclosed elements set up a logical “and”
between between inner and all outer predicates. Declared dependencies defined by the “depends”
XML attribute set up also a logical “and”. You can combine declared dependencies with several el
ements on the same level (“or”) to construct all possible logical expressions between defined predi
cates. The following listing shows these possibilities:

<document ...>

 <section > ... </section> <section > ... </section> ∨

 <section >

 <section > ... </section> ∧

 <item > ... </item> ∧
 </section>

 <section id="s1" />

 <section depends="s1" > ... </section> ∧

 <section id="s2" /> <section id="s2" />

 <section depends="s2" > ... </section> (∨) ∧

</document>

If an SMRL pattern element is enclosed in another element, then SMRL processors “jumps” over
nonmatched elements of the input document inside the enclosed element to find the inner element.
If you do not want this behavior, you can set the “strict-enclosing” XML attribute to “true”
in the outer element to switch it off.

OpenSHORE.org Page 23 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

1 2 1 2

3

4

5

3 4

3 5

6

7 6 7

8 9

A 8 9 A

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

A Appendix

A.1 Using Eclipse WST as SMRL Editor

The open source development environment Eclipse 3.1 (or newer) with its XML editor from the
“Web Standard Tools” (WST) plugin provides excellent support for editing SMRL specifications.
You can add the SMRL XML name space URL (http://OpenSHORE.org/schemas/smrl/
1.0/) with a reference to the SMRL schema file (smrl.xsd) to the Eclipse XML catalog. Eclipse
provides afterwards context sensitive help with lists of insert able elements and attributes and de
scriptions from the schema documentation tags (see screenshot 2 and 3 on page 25).

OpenSHORE.org Page 24 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

Screenshot 2: Eclipse context help for SMRL elements

http://OpenSHORE.org/schemas/smrl/1.0/
http://OpenSHORE.org/schemas/smrl/1.0/

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

Please follow these steps for adding the SMRL schema file to the Eclipse XML catalog:

1. Select “Window → Preferences → Web and XML → XML Catalog → User Specified
Entries → Add”

2. Press the folder button in the right corner and select the SMRL schema file (smrl.xsd)
from the current workspace (Eclipse will store a relative path with the project name as
root) or from the file system (Eclipse will store an absolute path)

3. Select “Namespace Name” as key type

4. Enter “http://OpenSHORE.org/schemas/smrl/1.0/“ as key and press the “Ok”
button (see screenshot 4 below)

OpenSHORE.org Page 25 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

Screenshot 3: Eclipse context help for SMRL attributes

http://OpenSHORE.org/schemas/smrl/1.0/

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

You must associate the SMRL extension (*.smrl) with the Eclipse WST XML editor (with menu
“Window → Preferences → General → Editor → File Associations”) and use the correct name
space in your SMRL file to get context sensitive help from Eclipse. Your file could look like the
following template (using SMRL as default namespace):

<?xml version="1.0" encoding="..."?>
<smrl xmlns="http://OpenSHORE.org/schemas/smrl/1.0/">
 <document
 ...
 >
 ...
 </document>
 ...
</smrl>

A.2 Running the SMRL Metaparser

The SMRL Metaparser is an implementation of a SMRL processor in standard XSLT and can be
downloaded from the OpenSHORE project pages as Open Source. The Metaparser main XSLT
driver scripts are named by the following schema:

smrl4<input format>2<output format>.xslt

This can be read as “SMRL for <input format> to <output format>". You can run these scripts with
your favorite XSLT processor, but the recommended way to run the SMRL Metaparser is to use of
Apache ANT or Maven. This Java build tools are platform independent and provides all necessary
abstractions for collecting files and paths to apply the parser in a well defined manner on your docu
ments. For convenience and testing purposes you can also run the parser directly from inside
OpenOffice 2.0 and MS Word 2003. The following sections describe all these alternatives.

OpenSHORE.org Page 26 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

Screenshot 4: SMRL XML catalog entry

http://OpenSHORE.org/schemas/smrl/1.0/

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

A.2.1 Apache Ant

You can directly use the Ant “style” task to run the SMRL parsers. You can set up the path of the
SMRL specification file used and the debugging mode over XSLT parameters. Here is an excerpt of
an ANT build file creating SHORE XML from WordML XML files:

<target name="parse">
 <style
 basedir="${input.dir}"
 includes="*.xml"
 destdir="${output.dir}"
 extension=".xml"
 style="${smrl.dir}/xslt/smrl4wordml2shore.xslt"
 >
 <param
 name="smrl.file"
 expression="${basedir}/MySpec.smrl"
 />
 <param name="debug.level" expression="0"/>
 </style>
</target>

If the input documents contain images in WMF/EMF format and the parsers should convert them
into PNG, you must add the path of the XSLT extension and several OpenOffice JAR files to the
XSLT processors classpath. If you set up the environment variable OFFICE_HOME to your
OpenOffice installation path, you can do this with the following Ant definitions for example:

<property environment="env"/>

<path id="image2shore.classpath">
 <path location="/${env.OFFICE_HOME}/program"/>
 <fileset dir="/${env.OFFICE_HOME}/program/classes">
 <include name="juh.jar"/>
 <include name="jurt.jar"/>
 <include name="ridl.jar"/>
 <include name="unoil.jar"/>
 </fileset>
 <fileset dir="${smrl.dir}/lib" includes="image2shore-*.jar"/>
</path>

<target name="parse">
 <style
 ...
 >
 <classpath refid="image2shore.classpath"/>
 ...
 </style>
</target>

OpenSHORE.org Page 27 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

The OpenOffice program directory must be included in the classpath, because the Java interface
bootstrap code is searching the OpenOffice binary inside the classpath. If the XSLT extension does
not find OpenOffice classes, it tries to call an installed ImageMagick binary for transformation.
This only works on MS Windows, though, because ImageMagick do not implement WMF/EMF
conversion on other platforms.

A.2.2 OpenOffice Filter

To run SMRL parsers from inside OpenOffice install the SMRL filter package by follow these
steps:

1. Startup OpenOffice

2. Open a new text document (File → New → Text Document)

3. Select menu Tools → XML Filter Settings

4. Click on button “Open Package”

5. Choose the OpenOffice filter package file inside the filter directory

Afterwards you will find new output formats inside the OpenOffice export file dialog. To transform
a document, select “File → Export → File format → SMRL * → Export”. All these export filters
are using the default SMRL specification file (documents.smrl) inside the user specific
OpenOffice configuration directory (.../user/xslt/OpenSHORE...). The SMRL filter pack
age also contains an input/output filter to store documents inside a flat XML file without compres
sion and splitting into several XML parts. Such files also contain all images and embedded objects
as base 64 coded data URLs. The flat XML format can be used for batch transformations without
using OpenOffice. This file format can be selected inside the “save as” and “open” dialogs (“Flat
XML (*.xml)”).

A.2.3 MS Word

Because the SMRL Metaparser is compatible with the MS XSLT processors from MSXML 3.0 and
4.0, you can run SMRL parsers directly from inside MS Word 2003. To do this, open the input doc
ument in MS Word and follow these steps:

1. Select “File → Save as”

2. Check option “Apply transform”

3. Press button “Transform...”

4. Select the desired SMRL parser (i.e. smrl4wordml2xtm.xslt) and press the “Open”
button (see screenshot 5 below)

OpenSHORE.org Page 28 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

5. Press the “Save” button

Bibliography
[Mück2002] Richard Widhalm, Thomas Mück. Topic Maps. Springer, ISBN 3-540-41719-2, Berlin,

Germany, 2002.

[Vlist2002] Eric van der Vlist. XML Schema. O'Reilly, ISBN 0-596-00252-1, Sebastopol, USA, 2002.

OpenSHORE.org Page 29 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

Screenshot 5: Running SMRL from MS Word 2003

OpenSHORE SMRL Tutorial
Writing SMRL Specifications for Your Documents

Alphabetical Index
A

Ant .. 27

E

Eclipse .. 24

WST .. 24

M

MS Word 2003 .. 28

O

OpenOffice ... 28

S

SMRL .. 4

X

XML attribute ..

composite-rel-type ... 22

composite-source-ref 22

composite-source-type 22

composite-target-ref .. 22

composite-target-type 22

contains ... 12

decimal-format ... 16

depends ... 17

description-contains ... 9

direction ... 21

eq .. 14

global .. 14p.

gt ... 14

id .. 17

is-number ... 12

lt ... 14

marker-ends-with ... 15

marker-starts-with .. 15

name-after ... 16

name-before .. 16

name-by-position ... 16

name-postfix .. 16

name-prefix .. 16

name-ref .. 17

namespaces .. 17

not-contains ... 12

not-equal .. 12

number-format ... 16

pred-contains ... 12

source-ref .. 21

source-type .. 21

strict-enclosing ... 23

succ-contains ... 12

target-ref .. 21

target-type ... 21

title-contains .. 9, 11

title-ends-with .. 11

title-not-contains .. 11

title-starts-with ... 11

to-lower-case ... 16

to-upper-case .. 16

type .. 9

visibility .. 17

word-list ... 16

word-starts-with ... 15

XML element ..

col .. 13

document ... 9

item .. 12

row ... 13

section ... 11

table ... 13

text ... 14

OpenSHORE.org Page 30 of 30
OpenSHORE-SMRL-Tutorial.odt 2006-06-29

	1Introduction
	2Example
	3Basic Matching
	3.1Document Type
	3.2Marking Objects
	3.2.1Sections
	3.2.2List Items
	3.2.3Tables
	3.2.4Text Items

	4Building Names
	5Referencing Matches
	5.1Default Visibility
	5.2Explicit Visibility
	5.3Defining Dependencies
	5.4Implicit Namespaces
	5.5Explicit Namespaces

	6Marking Relations
	6.1Regular Relations
	6.2Composite Relations

	7Combining rules

